If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-2n-28=0
a = 1; b = -2; c = -28;
Δ = b2-4ac
Δ = -22-4·1·(-28)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{29}}{2*1}=\frac{2-2\sqrt{29}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{29}}{2*1}=\frac{2+2\sqrt{29}}{2} $
| 6*(x-15)=4x+10 | | 26=y/2+21 | | 240=6+6(-3+7x) | | -7a-21=0 | | 2(m+22)=74 | | -7=-3-4y | | 5^(2x+1)+26(5^x)+5=0 | | 8x-1=24-4x | | A=3.14r^2r | | c+15/6=9 | | X2-8x-9=5-9 | | ⅘u+5=25 | | 36*3/x=2 | | 6-10x=-23x+1 | | 7(k-94)=14 | | -4n^2+2n=11 | | -7=3-y | | -5(1-5k)=-205 | | x+-10=29 | | 10k+–2k=16 | | (36x3)/x=2 | | 2,5*(12x-16)=25x-25 | | 0,5*(40x-20)=10x+40 | | 34-x/2=-12 | | (13x-35)+(5x-19)=(13x-35)+(2x+14) | | 7*(3x-5)-13x+4=1 | | E^(8x+7)=11 | | h-85/5=2 | | 12(x−5)=4(3x+5) | | 6(d+1)=30 | | ∠B=(9x)° | | (1/2)^3x+1=32 |